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We have derived the expressions for the extremum condition of ( E ) ,  corre- 
sponding to any wave function. These expressions are given as a function of 
the spin orbitals. We have carried out the derivation considering the spin 
orbitals as vectors belonging to an orthonormal basis. The corresponding 
variational equations have been derived introducing the condition that the 
norm of  the wave function is constant, as the only additional constraint. 

From the expression obtained for the first variation of the matrix elements of  
H, as a function of the spin orbitals, we have derived the R H F  equations for 
a simple case. 

In the present procedure, the couplings between orbitals of different shells 
appear directly, being defined explicitly, and they may be taken as correspond- 
ing with the elements of a Hermitian matrix. 

The calculations that we have carried out show that the coupling operators 
defined in the paper give results which are variationally correct. 
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1. Introduction 

Much attention has been given to the Open Shell Restricted Hartree-Fock 
(OS-RHF) [1-17] theory, due to the fact that the couplings between different 
shells cannot be eliminated from the Euler equations except in the particular case 
where different symmetries exist. 

In all the methods usually employed, the energy expression to be varied is obtained 
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taking explicitly into account the orthonormality property of the orbitals 

<4~ I ~bj>=aiJ ( l) 
and consequently, the constraint 

<a~, I q~J> +<q~, I aq~> = 0  (2) 

must be introduced in the energy variation procedure via the Lagrange multipliers. 

In this work the approach to the OS-RHF problem is different. We start from the 
general wave function 0 of the system and we define 50. We have 

<a0 In-El 0> +<• [H--E] &k)=0  (3) 

as the definition of the extremum condition in a general form. Subsequently this 
equation is developed in terms of the spin orbitals and finally the characteristic 
constraints defining the RHF method are introduced. 

The Euler equations resulting from this development have all the couplings in a 
self-defined way. Therefore no subsidiary conditions such as the Hermiticity of the 
undetermined Lagrange multipliers (ULM) are necessary when this technique is 
used [6-9]. 

In the next section, starting from a wave function in the most general form, the 
contributions of the spin orbitals to the first variation of the energy are introduced. 

In the following sections, the general form is not kept as we have restricted our- 
selves to the particular case of a Slater determinant. 

In Sect. 3, the OS-RHF equations are deduced and compared with those obtained 
by other methods in the literature. Finally several calculations on Li and Na atoms 
have been performed in order to study the influence of the different coupling 
operator definitions on the convergency of the OS-RHF equations. In Sect. 4 the 
most significant results are given. 

2. Variational Procedure 

Let us consider a wave function O, approximated by a linear combination of 
Slater determinants : 

O = }-'-', c,~O ~ (4) 
/ , t  

where t)" is the #th determinant of dimension N, equal to the number of electrons 
being considered: 

0 ~= II0~0~ . . .  0~ll (5) 

where ~k~ is one of the M spin orbitals of the basis set, with M>~N. The expecta- 
tion value of the energy associated with Eq. (4) is given by 

<E) = (~/, Inl ~0)/(~0 I O> (6) 
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and consequently, the stationarity of (E> implies that 

<60 In-El 0> +<0 In-El `50>--0 (7) 

where E represents the extreme value of the energy, and `50 is written as a function 
of the variation in the spin orbitals, `50~'. 

Given the arbitrary character of `50~, we may substitute 60~ by i`50~' and, conse- 
quently, `50 by i`sO. With these substitutions, Eq. (7) becomes 

<̀50 IH-EI 0>=o (8) 

Substituting Eq. (4) in Eq. (8) and fixing the values of the % while varying the 
Slater determinants, 0", we obtain 

Z c*.cA 5̀0" In-El 0~> =0 (9) 
/t, V 

Let us consider any diagonal matrix element from Eq. (9); as the antisymmetrizing 
operator commutes with the Harniltonian and is idempotent, it follows: 

<`5~ I n - E l  0"> =(<`50~0~ . . .  0~ I +<0~ `50"~... 0~,1 + -  

+<0~"0~... `50~])(H-E) ~ ( -  1)vP IO~k~... 0~> (10) 
P 

Let us take, for example, the term corresponding to the variation in the i'th spin 
orbital 

(0"10~ .. .,507. .. O~r] (H-E)( -1)PP]  0~0~ . . .  0~> 
P 

(11) 

Assuming that the spin orbitals are orthonormal, and since in general, 
(`5~' I 0~>#0, the expansion of Eq. (11) leads to a monoelectronic and a bi- 
electronic part. In the former, the non-zero terms are associated with the identity 
and Pij permutations, while in the latter the non-zero terms are associated with 
the identity, Pii, P~k and P~jP~k permutations. With these considerations, Eq. (10) 
may be written as 

<`50" IH-EI  0"> = ~ I-<`507 Ih + ~ L j - E  I Of) 
i j~:i 

+<̀50~ 107> Z <0~ ]h +�89 ~ LK] 0~> 
j r  K~-i , j  

- ~ <`501'10Y><0~ Ih+ ~ LKI 01'>], (12) 
jr  Kq: i , j  

where Lj groups the Coulomb Jr and exchange Kj operators in the usual way, 
that is, Lj = J j -  Kj . 

In a similar way it is easy to expand a general term, (`50" I n -  El 0 v>, from Eq. (9). 
The possible cases giving a non-zero result are: 

1) 0"=0v;  first variation given by Eq. (12), 
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2) ~b ~ and ~b ~ differ in one spin orbital ~'a ~ ~ ~'~ 

<6~b ~' }H-E I ~b~ 5= <6~k~ lh + ~ L , - E  l ip~> 
i ~ a  

i ~ a  j-/:i ,a i-~a 

j~: i ,a  

+ E Zj[G>-<~q'~lG>@~lh+ E t~lq'v> 
j -~ i ,a  j ~ i , a  

- E <6ff~' I ff~><6Y [Za[ ~7>) 
j ~ i , a  

It v .  3) ~k ~ and ff~ differ in two spin orbitals ~k~ ~ ~,~, ~b~ # ~b~ 

p q~:p 

i~:p,q 

- <~G I G > <~'~ I h +z,i G > -  <'~G ] ~'7 > @7 IL~I G > 

v .  v .  I~ v 4) ~ and ~ differ in three spin orbitals ~ ~ 6~, ~b~ ~ ~,~, ~,~ ~ ~r 

p q~, ,,~,.~ (15) 
v /t I It, I G>) 

All the terms in Eqs. (12-15) with factors of the type <c5~/~ [ ~b~>, appear only 
because we did not proceed in the usual way. That is, if the energy expression had 
been obtained following the Slater rules as a previous step to the variational 
procedure, all these terms (which follow directly from the products (ff~t ~bj>) 
would not be present in Eqs. (12-15) due to the orthogonality property of the 
orbitals. 
Eqs. (12-15) are the general Euler equations for an orthonormal basis of spin 
orbitals. 

Any restricted equation may be obtained as a particular case of Eqs. (12-15) by 
introduction of the appropriate relation between the spin orbitals (i.e. closed 
subshell, degenerate open subshell, etc.). 

In this work we limit our analysis to the OS-RHF with a single Slater determinant. 
In the next section the form taken by Eqs. (12-15) in this case will be deduced and 
a comparative analysis of our formalism with that of other authors will also be 
given. 

3. Case of a Slater Determinant, RHF Equations 

Let us assume that the wave function is approximated by a Slater determinant: 
~'= I1~'1 .-- ~Ntl. 
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The stationarity condition of <E> implies the nullity of Eq, (12) and, given the 
non-zero character of fi~, we must have: 

{h+ Y Lj-E+ y~ <~jLh+~ Y L~I~,j> 
j ~ i  j=~i k#: i , j  

- ~, ]ff~>(qJj] (h+  ~ Lk)}[l~i>=O (16) 
j ~ i  k ~ i , j  

Let us consider for example that the Slater determinant has 2M spin orbitals 
associated with a closed subshell, and that the remaining N - - 2 M  correspond to 
orbitals that are singly occupied and have a common spin factor (ct or fl). Let us 
also write ~i=~bdh where ~b i and r h are spatial and spin functions respectively. 
These considerations imply q~l =(~e ; ' ' "  ; ~b2M -1 ~---q~2M ; (~2M+l ~ ' ' "  ~bN"  The 
introduction of these conditions in Eq. (16) and the integration over the spin 
coordinates lead to the RHF equations: 

[ Fc- Z l~ ,><~ , IF~  + Z [ ~j><'~j [FCl 4',> 
l jq:i  

[ F~  Z I q~J><~J [ F~ [ CPk)=Okk I CPk> + Z I ~bt> ((01IF~ (17) 
j l ~ k  

where i and j refer to a closed shell orbital and k and l refer to an open one. F c 
and F ~ are Fock operators for closed shell and open shell orbitals respectively: 

F~=h + ~ (2Jj-Kj)  + ~ ( Jk-- �89 
j k 

F o 1 h (18) =~{ + Z ( J I - - K I ) + ~ ( J k - - K k ) }  
1 k 

O. and Okk bear explicit expressions given by: 

0u= <q~ , ]F~[ ~bi> 

Gk=<G [F~ G> (19) 

and can be interpreted as the ionization potentials with sign changed of the i and 
k levels respectively in the frozen orbital approximation (really, Okk is --IP/2). 

From the expressions (19) it can be easily seen that the occupied orbitals form an 
orthogonal set. 

Using a unitary transformation of the type 

~;=~u~ 

�9 'o = ~oUo (20) 

it is possible to eliminate the off-diagonal terms corresponding to the orbitals of 
the same shell, and Eq. (17) may be reduced to: 

[ F ~ - Z  ] q~, > <qS, [F~ I+,> 
l 

[ 1 -  E I qSj)<qsj ]]F~ ]G> (21) 
Y 
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By defining 

O,k = Ok* = ( (ol ]F~ (ok > (22) 

Eq. (21) takes the usual form for the Euler equations in the ULM technique, and 
the O~k elements may be directly compared with the Hermitian off-diagonal 
elements of the ULM matrix. 

By premultiplying the first of the Eqs. (21) by a bra of the open shell, and having 
in mind the orthonormality of the orbitals, it holds that 

((ok Ire--F~ (Oi)=0 (23) 

It is well known that in most of the approaches related to the OS-RHF theory the 
main condition for a well defined coupling, is the Hermiticity of the ULM, intro- 
duced via the Eq. (23) [6-14]. 

In the present procedure, the Hermiticity of the couplings given by Eq. (22) and 
Eq. (23) both hold automatically, and as a consequence the integral from Eq. (23) 
can be considered as a test integral, so that, when the orbitals are those which 
extremalize the energy, the integral value must be zero. 

Because Eqs. (21) lead to the Eqs. (22) and (23), the former can be considered as 
the natural OS-RHF equations related to the example chosen in this section. 

Let us write 

/-/c I [(O,) 
H~ I (Ok )~'~'kk ](Ok ) (24) 

where 

HC=Fc--P~ +(1 - ~ o c ) F  ~ 

H ~  F ~  U[#co F~ +(1 - i,t~o)F ~ ] (25) 

with U and F ~ defined by Eq. (18), and where/x and po are the projectors for the 
closed and open subshells respectively. 

By taking the appropriate values for the/~o~ and/t~o parameters, we can classify the 
theories of the literature in which we are interested [-6-15]. Table 1 gives the #o~ 
and/~o parameters related to the different equations. 

The Eq. (25) seems to be an unnecessary complication of Eq. (21) since the 
couplings implied in Eq. (25) are formally those defined by Eq. (19) because of the 

Table 1. Theories considered and corresponding parameters in Eqs. (25) 

Birss and Goddard Morikawa Present 
Theory Huzinaga I-8] Fraga 14] et al. 1-15] 1-13, 14] Levy 1-7] work 

#oc variable 1 0 1/2 variable 0 
#co variable 0 1 1/2 Poc 0 
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requirement of Eq. (23). However Eqs. (25) are useful for the calculations of the 
later section. 

In order to perform test calculations with the operators defined by Eq. (25), it is 
useful to define an operator in the way 

H = n~(1  - po)  + n o ( !  - U )  (26) 

which leads to the same eigenvalue equations as Eq. (25). 

The operator defined by Eq. (26) guarantees the couplings, and because their 
matrix representation is not symmetrical, their eigenvectors may be not ortho- 
normal, and for this reason no additional loss of freedom is added to the proper 
restrictions of the problem, a very important fact when a theory is tested. 

In order to obtain the eigenvalues and eigenvectors of Eq. (26) the following 
procedure has been adopted: 

To calculate the eigenvalues we have: 

l) to previously condition the matrix by equilibrating it through diagonal similari- 
ties [-18], 

2) to reduce it to the Hessenberg form by orthogonal similarities [19], and 
3) to compute the Hessenberg matrix eigenvalues [19]. 

To calculate the eigenvectors we have applied the recurrence relations 

c. - Z ~ (27) : -  i Cfl  
j > i  a i i  

rt n 

i _ i aij-- anj 
aij - aij , n = i -  1 (28) 

a n n  

where c, represents the i'th expansion coefficient of the l'th orbital, and a~j is 
given by 

a]j = H q -  edi i (29) 

where Hij is an element of the matrix associated with the H operator from Eq. (26); 
e~ is the /'th eigenvalue, and S~j is an element of the overlap matrix. By using 
Eqs. (27-29) the first N -  1 coefficients of an orbital can be computed; to compute 
the remaining coefficient we can use the norm condition of the orbital. 

As has been shown [6, 21], convergence in the energy or in the orbital's coefficients 
is not a sufficient criterion to guarantee that the solutions obtained in a SCF 
calculation are Hartree-Fock solutions. In the calculations of the next section, we 
adopt the zero value of the integral from Eq. (23) as a criterion for the convergency. 

4. Results 

Some calculations have been carried out in order to show the influence the coupling 
operators have on the convergence of the variational equations. 
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First, we have carried out the calculations for the 1S22S 1 and 1S22S22p63s t c o n -  

figurations of  the Li and Na atoms respectively. The STO basis set used is that 
given by Clementi [20]. 

Figs. 1 and 2 show the convergence for different values of # =  #oc=#co and for 
#oc = 1, #co = 0, the latter corresponding to Birss and Fraga's equations [-4]. 

Both atoms show a similar behaviour, with the rate of  convergence decreasing as 
p increases; anyhow, for 0~<#< 1, they both converge to the same value, 
-7.43272707 and -161.84972989 a.u. for the Li and Na atoms respectively; the 
values of the integral from Eq. (23) being zero in both cases. 

Although convergence is achieved for # = 1 and for l~oc = 1, #co = 0, they give higher 
energy values than those obtained when # < 1. The values corresponding to # = 1 
are -7.43257584 a.u. for the Li atom and -161.84413466 a.u. for the Na atom, 
and the integral f rom Eq. (23) takes values sensibly different from zero; for the Li 
a tom <4,2slFC-F~ and for Na <4,3,[U-F~ 
0.0401580 and <4'3s IF-  F~ > -- 0.0586906. Our calculations with # > 1 show 
no convergence. 

Many calculations have been carried out using different values for the two 
parameters appearing in Eq. (25). The #oc parameter, which is the one related to 
the closed-shell operator,  is the dominant one since, if we fix Poc while varying 
#co, the point of convergence is not affected significantly. For  #oc = 0, the energy 
value corresponding to # = 0 in Figs. 1 and 2, is achieved independently of  that 
given to #co. If  #oc = 1, we are always led to convergences which are dependent on 
the values of #co ; however, the result does not vary significantly as we change #co 

~z=l 

-7.~325 

-7.~326 

-7.4327 

' 5 ' 9 ' I'3' I'7'2'I ' 2'5' ~'9' 3'3' 

Fig. 1. Li atom. Rate of  convergence for 
different values of  p in Eqs. (26). (a) Results for 
Birss and Fraga formalism 
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Fig. 2. Na atom. Rate of convergence for 
different value of/~ in Eqs. (26). (a) Results for 
Birss and Fraga formalism 

-161.844 

-161.845 
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-161.847 

-161.848 

-161.849 

-161.8497 

.:O.Sl 

~:0.6 I 

 ~ / 

i ' ; ' ; '~'3 ' G '  2'1 '2'5'2'9'3'3' 

and, in any case, the point of convergence has a lower bound corresponding to 
Birss' and Fraga's equations [4], and in such cases the value of the test integral of 
the Eq. (23) is sensibly different from zero. 

For #oc > 1, convergence is not achieved, regardless of the value given to #co. 

All these results show that the condition given in Eq. (23) may be relaxed except 
for the closed-shell operator defined by Eq. (25). This can explain the fact that the 
equations corresponding to #oc = 0, and #co = 1 give good convergence although, 
in the intermediate steps of the SCF calculation, they do not satisfy the Hermiticity 
of the ULM matrix. 

For the lowest value, the greatest rate of convergence is achieved with #oc = / %  = 0; 
these values are related to the Eqs. (21) obtained in the present paper. 

Defining H ~ and H ~ as in Eq. (25), the results obtained clearly show the influence 
that the choice of parameters may have upon the results. Hence, it is hard to 
predict the best set of parameters for a more complicated system and whether a 
particular choice will yield correct results. 

We have carried out calculations without any coupling operators. As expected, 
these calculations do not give good results (-7.43257120 and - 161.84327423 a.u. 
for the Li and Na atoms respectively). Elimination of the couplings results in an 
inappropriate mixing of both orbitals. The corresponding values of the integral in 
Eq. (23) are significantly different from zero, -0.0782816 for the Li atom and 
-0.037750 and 0.01640 for the Na atom. This gives a further proof of the fact that 
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the orbitals obtained in this case do not extremalize the energy and the usefulness 
of the integral of Eq. (23) as a good tool in analyzing the variational character of 
the SCF results. 

The diagonalization of the matrix associated to operator of Eq. (26) gives orbitals 
which, for #oc=#co = 0, are variationally correct solutions since the integral in 
Eq. (23), defined by the orbitals of both shells, is zero. 
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